If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2-36x+4=0
a = 19; b = -36; c = +4;
Δ = b2-4ac
Δ = -362-4·19·4
Δ = 992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{992}=\sqrt{16*62}=\sqrt{16}*\sqrt{62}=4\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{62}}{2*19}=\frac{36-4\sqrt{62}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{62}}{2*19}=\frac{36+4\sqrt{62}}{38} $
| 7(x+1)=8x+7-2(3x+4) | | X²-3x=3x-5 | | 5a+8=51 | | 3/4(x+1)−1=−2 | | 52-a+5=4a+3 | | a+5=52-4a-3 | | a+5=52-4a+3 | | a+5=4a+3 | | X-3x=3x-5 | | 5a+8=52 | | 5(5x+2)=-4 | | 12x-9+84=2x-5 | | 12x-9+48=2x-5 | | 2-(y+6)=3y | | 2x-9+48=2x-5 | | 2)5x3+4x2−57x=0 | | 40-2+4k=50 | | 3/4x+1=1/4=1/4x | | h2+2=14−h | | 0.8x+0.4(1-x)=0.6 | | (e+4)×3=21 | | 5-4x=4x-7 | | 5x+1=3.3x-7.3 | | 32^5=2^x | | (1/64)^x=256 | | 7.5x+1.5=5x-11 | | 6•x+2=14 | | 25=60n | | 20x+4x=0 | | 4x+12-10x-5=13 | | 4x+12-10x+5=13 | | 2x-4+5x-25=6 |